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ABSTRACT: Scanning probe microscopy (SPM) is recognized as
an essential characterization tool in a broad range of applications,
allowing for real-space atomic imaging of solid surfaces, nanomateri-
als, and molecular systems. Recently, the imaging of chiral molecular
nanostructures via SPM has become a matter of increased scientific
and technological interest due to their imminent use as functional
platforms in a wide scope of applications, including nonlinear
chiroptics, enantioselective catalysis, and enantiospecific sensing. Due
to the time-consuming and error-prone image analysis process, a
highly efficient analytic framework capable of identifying complex
chiral patterns in SPM images is needed. Here, we adopted a state-of-
the-art machine vision algorithm to develop a one-image-one-system
deep learning framework for the analysis of SPM images. To
demonstrate its accuracy and versatility, we employed it to determine
the chirality of the molecules comprising two supramolecular self-assemblies with two distinct chiral organization patterns. Our
framework accurately detected the position and labeled the chirality of each molecule. This framework underpins the tremendous
potential of machine learning algorithms for the automated recognition of complex SPM image patterns in a wide range of research
disciplines.

■ INTRODUCTION

Scanning probe microscopy (SPM), including scanning
tunnelling microscopy (STM) and atomic force microscopy
(AFM), has been widely used for characterization of the
structural and electronic properties of nanomaterials and
molecules with an unprecedented spatial resolution.1−5 A wide
range of systems suitable for the SPM imaging span from single
atoms,1 molecules,2 and their assembled nanostructures3 to the
large biopolymers and complex biological proteins.4 Recent
breakthroughs in the field of SPM imaging are exemplified by
visualization of the intramolecular chemical bonds in a variety of
molecular functional nanostructures using tip-functionalized
AFM and bond-resolved STM imaging techniques.2 These
research advances establish SPM as a highly prominent tool in a
broad range of disciplines, including materials science,
chemistry, physics, and biology.
Molecular chirality imaging and recognition of supra-

molecular assemblies are detrimental for their use as functional
platforms in a wide range of applications, including enantiose-
lective heterogeneous catalysis,6 chiral separation,7 chiroptical
materials,8 and fundamental biochemical processes.9 Therefore,
the study of the chiral organization of the self-assembled
molecular structures using SPM is amatter of increased scientific
and technological interests.10 However, recognition of the chiral

patterns of a densely packed molecular structure, revealed by
SPM images, is usually a time-consuming and error-prone
process, which relies on the ability of a human to analyze,
classify, and interpret ultimately fine variations of the STM
contrast at the nanoscale. Therefore, it hinges on the need for a
highly efficient analytic tool capable of accurate and autonomous
recognition of the complex chiral patterns of SPM images,
requiring minimal human supervision.
To this end, a number of analytic tools with traditional

machine vision as well as machine learning algorithms have been
developed to identify molecular patterns in SPM images with
reduced human supervision.11−14 These algorithms typically
separate the molecular pattern recognition process into two
steps, namely, molecule detection and molecule classification.
The molecule detection step is typically achieved using
traditional machine vision algorithms, including normalized
cross-correlation15 and scale-space theory.16 The molecule
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classification step is attained by other supervised machine
learning (ML) methods.17 However, it is still challenging for
traditional machine vision algorithms to detect and classify
molecules of complex SPM patterns. The substantial drawback
of the traditional machine vision approaches is that different
algorithms and model parameters are required for different
molecular patterns to achieve the desired performance, and a
long trial-and-error process is required to determine viable
algorithms and parameters.18,19 For example, the normalized
cross-correlation algorithm cannot accurately detect the
position of each molecule in a complex densely packed system
due to the similarity between interspaces and molecules.
Besides, the quality and resolution of the SPM images can
vary significantly even for the samemolecular system, depending
on an intimate interplay between the electronic and structural
properties of the sample, as well as the status of scanning probe
and instrument parameters applied for image acquisition (e.g.,
bias voltage, tunneling current, or frequency shift set point).
Furthermore, the acquisition of high-quality SPM images of
complex supramolecular self-assemblies is normally time-
consuming, so the data acquisition rate is limited, making the
machine vision model fall short of data and, thus, present limited
performance. As a result, it is of high value to address these
challenges through a more accurate, robust, and data-efficient
deep learning framework.
Here, we develop a one-image−one-system deep learning

framework consisting of a state-of-the-art deep learning machine
vision algorithm, a uniquely designed data selectionmethod, and
effective data augmentation techniques to provide a versatile
solution capable of the automated recognition of a complex
SPM pattern. Our framework uniquely combines a designed
data selection method and data augmentation techniques,20

which not only allows for a highly accurate molecule detection
and classification by a regional-based convolutional neural

network (Faster R-CNN) but also reduces demand for large data
sets to one single SPM image for each molecular system. We
then showcase our framework to analyze the STM images of the
two densely packed molecular self-assemblies with different
chiral recognition patterns. Despite ultimately fine variations of
the STM contrast of the individual molecules with different
chirality and the varying quality of the STM images, our
framework automatedly labeled the chirality configuration of
each molecule within self-assemblies with unprecedented
accuracy and robustness. Moreover, the generality of our
framework is illustrated by analyzing nonideal STM images, and
an additional domain knowledge incorporation module is used
to further improve the generalization capability. Our results
underpin the tremendous potential of our one-image−one-
system deep learning framework for highly accurate detection
and classification of complex SPM patterns with a limited data
set.

■ RESULTS

Molecular Systems. As a proof-of-concept demonstration
of the generality of our framework, we selected two different
supramolecular assemblies consisting of star-shaped
hexadimethylphenylbenzene (HPB) and fluorine-substituted
hexadimethylphenylbenzene (F-HPB) molecules (Figure S1),
respectively. Both HPB and F-HPB molecules adopt a highly
nonplanar configuration due to a steric-hindrance between
dimethylphenyl rings (Figure S1 in this study and see also Figure
3 and Figure S7 in ref 21). The steric orientations of
dimethylphenyl rings render a prochiral left-handed (L) or
right-handed (R) enantiomeric configurations upon their
adsorption on Ag(111) (Figure S1). Furthermore, the different
chemical composition of HPB and F-HPB molecules leads to

Figure 1. Overview of the automated chiral molecule detection and identification workflow. This flow diagram illustrates the overall process of the
study, showing the completion of molecular chirality recognition through a series of modules from an original SPM image. First, the experimental STM
images are obtained (where I denotes tunneling current and Z denotes topography channel). Then image quality is rated by an unsupervised learning
method called t-distributed stochastic neighbor embedding (t-SNE). The data with the desired quality is augmented to generate a training data set for
the core prediction model. Afterward, an optional conditional random field filter based domain knowledge incorporation module can be utilized to
enhance performance for nonideal STM images. Lastly, the trained model is utilized for the image inference tasks for automated pattern analysis of the
SPM images.
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remarkably distinct chiral organization patterns of their self-
assemblies.
The STM imaging reveals that both HPB and F-HPB

molecules exhibit a 6-fold symmetry manifested by six
protrusions arranged in a hexagonal-like manner, which are
attributed to the six methyl groups attached to dimethylphenyl
rings. It is noted that individual HPB and F-HPB molecules
exhibit expected clockwise or anticlockwise appearances (Figure
S1) attributed to the L- or R-handed enantiomeric config-
urations, respectively. The chiral configurations of molecules
(i.e., L or R) are manifested by sub-Å variations of the STM
contrast. Therefore, the detection and classification of individual
molecules are formidably challenging due to barely discernible
contrast variations and the ambiguous borderline of each
molecule residing in the densely packed self-assembly. The
highly relevant and complex problems of the chirality
recognition in molecular self-assemblies and ML-driven SPM
image analysis make HPB and F-HPB self-assemblies ideal
playgrounds to showcase abilities and potential of the developed
one-image−one-system deep learning framework in automating
the molecule detection and chirality classification of the STM
images, which we further introduce below.
Overall Framework and Model Architecture. We attain

the ML-driven chirality recognition of the two molecular self-
assemblies (HPB and F-HPB) through the combination of the
four intelligent modules, namely, Data Selection, Data
Augmentation, Model Training, and Domain Knowledge
incorporation as shown schematically in Figure 1.
Module 1. Data Selection. The first module selects high-

quality STM images for training. A t-distributed stochastic
neighbor embedding (t-SNE) algorithm is adopted for
unsupervised data quality rating and visualization. In our
chirality recognition problem, the STM image is classified as a
high-quality one if a clear difference associated with distinct

molecule chirality can be revealed by t-SNE. The details of data
selection are introduced in the Training Data Selection section.
At this stage, the low-quality STM images are discarded for
better training purposes due to their adverse impact on the
model’s performance.

Module 2. Data Augmentation. The second module
generates a large data set from the limited high-quality
experimental STM images. A combination of effective
augmentation techniques is chosen such that the most
optimized model’s performance is achieved, as explained in
detail in the Data Augmentation section.

Module 3. Model Training. The core prediction model to
realize molecule detection and chirality classification is the
Faster Region-based Convolutional Neural Network22 (Faster
R-CNN), which is an object detection architecture widely used
in the ML field for the target object detection and classification.
A general block chat diagram of this core model (illustrated in
Figure 2) consists of three stages, namely, feature extraction,
molecule detection, and molecule classification. The details of
the model’s working principle are discussed in the Experimental
Section. A brief explanation of each stage is also provided below:

• Feature extraction stage (the first stage) aims to extract
useful abstract features of STM images. The abstract
features contain information including edges, textures,
and shapes of the molecules in STM images and, thus, can
be used for molecule detection and classification. This
process is highlighted by the blue block in Figure 2.

• Molecule detection stage (the second stage) can then
detect the preliminary bounding boxes, which indicate the
position and size of each molecule in STM images, based
on the abstract features extracted from the first stage as
shown in the orange block in Figure 2. These bounding

Figure 2. Schematics of theModel Training module, which consists of three main stages: Feature Extraction (blue block),Molecule Detection (orange
block), and Molecule Classification (green block). Bounding box: boxes around objects being checked for a collision.
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boxes are fine-tuned and filtered to yield more accurate
results.

• Molecule classification stage (the third stage) finally
classifies each molecule into its corresponding chirality
class (L- or R-chirality) according to the abstract features
extracted from the first stage and the position of each
molecule detected by the second stage. It also fine-tunes
the position of each molecule, as shown in the green
region of Figure 2.

Module 4. Domain Knowledge Incorporation. It is an
additional stage to enhance model performance on “nonideal”
STM images containing scanning artifacts, edges of self-
assemblies, or surface steps, by utilizing the conditional random
field method. It is not a necessary component when the
framework is used only for post-analysis of high-quality STM
images. However, it allows reduction of the false positive rate
and improvement of the recognition rate during analysis of
nonideal STM images. The key results of this additional module
are discussed for nonideal STM images in Figure 6.

Figure 3. Overall system performance and robustness analysis. (A) Performance metrics of the Faster R-CNN applied to three target systems. (B)
Robustness test performed on F-HPB andHPB systems.Model’s performance on STM images with low resolution and the different pattern was tested.
(C, D) Original experimental STM images of each molecular system, which were used to train Faster R-CNN models. The molecular structures of F-
HPB and HPB with their unit cells are indicated in the insets of figures. (E−J) The inference results were obtained upon analysis of high-resolution (E,
F), different pattern (G, H), and low-resolution (I, J) experimental STM images from the two trained Faster R-CNNmodels. Blue and orange circular
markers represent L-handed and R-handed molecules, respectively. The bounding boxes are converted from rectangles as per model outputs into their
inscribed circles to fit into the shape of molecules.
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After completing the model training stage, arbitrary STM
images with various resolutions containing hundreds of
prochiral molecules can be processed automatically with high
accuracy. Sample output is highlighted by the green block in
Figure 2, wherein each molecule is labeled by its bounding box
and corresponding chiral category (L or R). Further, as shown in
Figure 1, well-trained models can be incorporated into the
software with user interface (UI) designed for users’
convenience. More detailed information is provided in
Supplementary Note S14. The source code and developed
software can be found in the Zenodo database.

System’s Performance. In this study, a well-trained
automated analytic tool can be obtained within a short time
frame (a few hours) by using our one-image−one-system deep
learning framework. The core prediction Faster R-CNN model
was trained on a set of 1000 STM images generated by data
augmentation from only one high-quality STM image
containing approximately 50 molecules as shown in Figure
3C,D. The inference time for chiral pattern recognition is
notably low, i.e., 0.1 s per STM image. Figure 3A shows the
performance metrics of the trained Faster R-CNN models
applied to the analysis of the high-resolution experimental STM

Figure 4. Training data selection and data augmentation performance. (A−C) t-SNE results of F-HPB (A), HPB (B), and sparsely packed (B)
molecular system obtained from images of single molecule cropped from the STM images used for a model training. The clear boundary between two
clusters in the t-SNE results of both the F-HPB and HPB systems indicates a significant distinction between prochiral molecules. The results of the
sparsely packed system show a clear boundary between two clusters (target molecules and nontarget molecules) in t-SNE results, which indicates that
the selected STM image is suitable for model training. (D) Correlation between the performance metrics of Faster R-CNN models for the F-HPB
system and the number of independent molecules in an STM image used for a data set generation. (e) Correlation between the complexity of
augmentation techniques used for data sets generation and the performance metrics of Faster R-CNN models for the F-HPB system tested on STM
images in different conditions. LR, DP, and HR represent low resolution, different patterns, and high resolution, respectively. Prefix numbers 1−4
denote augmentation complexity level. (e.g., 1-LR represents the model trained on the data set generated by augmentation complexity 1 tested on low
resolution STM image). Augmentation complexity is dependent on the number of image augmentation techniques on an incremental basis used for
data set generation. More details can be found in Supplementary Note S5. (F) Performance of Faster R-CNN models against data set with different
ratios of R- and L-handed molecules.
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images of F-HPB and HPB densely packed self-assemblies. In
this study, an STM image is classified as a high-resolution image
if one molecule occupies a 50 × 50 pixels area in the image. For
the F-HPB system, the model trained on the data set generated
from one single experimental high-quality STM image
containing 53 independent molecules (see Table S1) achieves
an average precision (AP) of 85.3% and an average recall (AR)
of 84.8%. The AP and AR are performance metrics that are
commonly used in object detection23 for a quantitative
evaluation of the accuracy and precision of both bounding box
and classification results. Here, AP is defined as the percentage
of the correct chirality predictions among all predictions, while
AR reflects a percentage of the correct bounding box and
chirality predictions among all molecules in an STM image. The
detailed definition of the AP and AR can be found in
Supplementary Note S2.
In addition, we evaluated the model’s performance based on

recognition rate, which is defined as the percentage of correctly
recognized molecules from visual inspection, as shown in Figure
3E−J where each recognized molecule is overlaid by a circle
(blue or orange) depending on chirality type (L or R). Figure
3E,F shows that the recognition rate of high-resolution STM
images is exceptionally high, namely, 100%, which means that all
molecules in the STM images can be correctly detected and
classified.
Robustness Performance. Low Resolution. After the

success of our model in chirality recognition of high-resolution
STM images, we evaluated its robustness upon analysis of the
low-resolution STM images, wherein one molecule occupies
about 30 × 30 pixels area. Surprisingly, we found that despite a
low-resolution of the STM images, the recognition rates of F-
HPB and HPB systems are still remarkably high, namely, 95.1%
and 97.6%, respectively, Figure 3I,J, although themodel achieves
AP of 52.3% in the F-HPB system, presumably due to
imperceptible bounding box error. As a result, the molecular
patterns in low-resolution images are still accurately decoded by
the Faster R-CNN models trained on the high-resolution STM
images.
Molecular Pattern.Next, to demonstrate that the recognition

accuracy of our Faster R-CNN approach can be applied for
classification of any arbitrary molecular pattern, i.e., distinct
from the patterns in the training data set, a robustness test was
performed on STM images containing a domain-boundary,
Figure 3G,H. The sensitivity test results in Figure 3B suggest
that the AP and AR accuracy of the Faster R-CNN model is
insensitive to the different molecular patterns. Estimated
inferencing results obtained upon analysis of STM images of
both F-HPB and HPB self-assemblies with different patterns are
provided in Figure 3G,H, which shows a high recognition rate of
100%.
A similar test was also performed on STM images of a sparsely

packed molecular system shown in Figure S2. The low quality of
STM image (a large scan range and low pixelization) precludes
classification of the target molecules by human eyes. The
model’s performance of this system, which was evaluated based
on molecule detection accuracy without chirality classification
step, reveals a remarkably high AP of 86.8% and an AR of 87.3.
The extended inference results of the sparsely packed system are
discussed in Supplementary Note S1.
Training Data Selection. As we demonstrated above, the

quality of STM images is essential for the training of the Faster
R-CNN models, as the model’s performance is highly sensitive
to the quality of training sets.24 Specifically, faster R-CNNhardly

learns the distinctions between L- and R-molecules when trained
on the low-quality STM images. Therefore, high-quality STM
images are preferred to achieve the optimal model’s perform-
ance. A. Krull et al.11 have developed a high-accuracy CNN-
based method to assess the quality of STM images acquired on
the bare metal surface. However, the method has not yet been
generalized to assess the quality of images of complex systems
(i.e., molecular self-assemblies) by a single CNN. Furthermore,
such a quality rating CNN requires an extensive data set
containing large variations of different quality STM images for
training. Here we adapted t-distributed stochastic neighbor
embedding (t-SNE)25 to determine the quality of STM images
by inspecting the extent of the distinction between molecules of
different chirality in STM images.
t-SNE is an unsupervised machine learning algorithm used for

embedding high-dimensional data (including images) into low-
dimensional space for a visualization purpose. When images are
used as inputs, similar images are clustered in the low-
dimensional space while dissimilar images are repelled from
each other from visual inspection. Therefore, if the images of
prochiral molecules (L- and R-handed) in an STM image can be
successfully separated into two clusters by the t-SNE algorithm,
there is a significant distinction between molecules possessing
different chirality in this STM image and the quality of the STM
image is high. On the other hand, if the images of prochiral
molecules are assigned to only one cluster after using the t-SNE
algorithm, the molecules of different chirality are highly similar
and the quality of the STM image is low.
To assess the quality of the training sets used in this study,

images of target molecules under interest were cropped from
their corresponding experimental STM images and used as t-
SNE input. Figure 4A−C shows the t-SNE outputs of the three
training sets for the three different molecular systems. As shown
in Figure 4A,B, the target molecules’ STM images of F-HPB and
HPB systems can be separated into two clusters with a clear
boundary, and by postanalysis, the two clusters are with different
chirality. The two models, trained from the data sets generated
from these two STM images, can detect and classify the chirality
of F-HPB and HPB molecules with high accuracy. For the
sparsely packed molecular system, it is beyond human capability
to recognize the chirality of target molecules. However, it could
still be possible to distinguish the target molecules from other
molecules in this system. Although most of the molecules on the
STM images in this system are highly similar to human eyes, the
t-SNE results given by Figure 4C suggest that the target
molecules show a significant distinction among other molecules.
Indeed, the model trained on the STM image of the sparsely
packed molecular system can detect the target molecules with
high recognition rate as shown in Figure S2. However, one
cannot tell the difference among the target molecules to identify
the chirality of them from both human inspection and t-SNE
results as shown in Figure S3. Thus, it is impossible for Faster R-
CNN model, trained on this STM image, to achieve the
molecular chirality classification task. Therefore, it is recom-
mended to select higher quality STM images for data set
generation if chirality recognition is required. More details of t-
SNE and the hyperparameters used in this experiment can be
found in Figure S7 and Table S2.

Data Augmentation. Experimental generation of a large data
set to train a deep CNN based models is a time-consuming and
impractical task. It has been reported that image augmentation
can successfully increase the size of data sets and improve the
performance of CNN based models in many recent studies.26,27
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In consideration of the limited number of experimental SPM
images, a feasible method of data set generation is to perform
image data augmentation. It is worthy to note that there is still
the possibility to work with small data without doing
augmentation;28 however, it is preferred to perform the
augmentation when training data is as small as one single
image. Therefore, we provide a general guideline on the minimal
quantity of experimental STM images and the extent of
augmentation required to obtain a well-trained Faster R-CNN
model. In our case, the image augmentation is particularly
effective in reducing the number of required experimental STM
images because the molecules of each class are highly identical
(i.e., reveal minor variations), which could be simulated by
proper augmentation techniques. These variations, shown in
synthetic images, allow Faster R-CNN to extract key features of
molecules more precisely and, thus, improve the detection and
classification robustness of Faster R-CNN applied to STM
images acquired in different conditions.
Since standard methods to quantify the complexity of image

augmentation do not exist to date, we generate four data sets
from the single high-quality STM image containing 53
independent molecules using different augmentation techni-
ques. The number of augmentation techniques applied to the
four data sets is on an incremental basis, which can ensure that

augmentation performed on the subsequent data set is more
complex than that on the previous one. As shown in Figure 4E,
the model’s performance generally improves upon increasing
complexity of augmentation used for a data set generation,
especially when a model is tested on the low-resolution STM
images. While the model, trained on the data set generated from
high-quality STM images using augmentation complexity 1,
barely recognizes 1.4% of the molecules on the tested low-
resolution image, the recognition rate of the same STM image
dramatically increases to 95.1% when augmentation complexity
of 4 is used (inference results in Figure 3E). More details about
combinations of augmentation techniques and augmentation
complexity levels can be found in Table S3 and Supplementary
Note S5.
It is also noted that the performance of Faster R-CNN is

highly sensitive to the number of independent molecules in the
original experimental STM image (see Figure 4D). Six Faster R-
CNN models were trained on data sets generated by the same
combination of data augmentation techniques (complexity 3)
from high-quality STM images containing different numbers of
molecules. The models were then tested on the high-resolution
STM images. The results suggest that the model’s performance
increases with the number of independent molecules used in the
training set as shown in Figure 4D. An experimental STM image

Figure 5.Method comparison. (A) Comparison of the performance metrics of Mask R-CNN and Faster R-CNNmodels trained by data set generated
from the different numbers of independent molecules and tested on a high-resolution experimental STM image of the F-HPB system. (B) Comparison
between the recognition rates of the traditional NCC method and Faster R-CNN tested on high-resolution, different pattern, and low-resolution
experimental STM images of the F-HPB system. (C) NCC template, generated by an average of images of single molecule cropped from the STM
image. (D, E) Inference results of the NCCmethod on high-resolution and low-resolution STM images of F-HPB system in panel B, where green and
red circle markers represent correctly and falsely recognized molecules, respectively. The inference results of Faster R-CNN on the same images can be
found in Figure 3.
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containing more than 20 molecules for each chirality is sufficient
to train a desired Faster R-CNN model reaching AP = 82.8 and
AP = 84.9.
It should be noted that each Faster R-CNN of different

systems was trained on an STM image with the approximately
equal number of L and R prochiral molecules. The class balance
has a significant impact when developing the training data set
samples to get satisfying results.29 In our study, the number of
molecules of different chirality is comparable in both molecular
self-assemblies. However, for systems with a minor presence of
specific prochiral molecules, it is important to maintain L and R
molecule balance in the training set. Otherwise, if the
distribution of each class differs substantially, the accuracy of
the model would be low when classifying the specific target with
a low portion of data due to the imbalance of L and Rmolecules.
The performance metrics of models, trained on the imbalanced

data sets (i.e., L/R ratio of 1:10), are shown in Figure 4F, where
the average precision is calculated and shown separately for each
chirality. From the figure, the model cannot detect and classify
(R) F-HPB molecules in the STM image with high accuracy if
(R) F-HPB molecules are in minor presence in the training sets.

DifferentMachine VisionMethods Comparison.At last,
we compare the performance of our framework to two other
recently developed methodologies, namely, traditional normal-
ized cross-correlation (NCC) and Mask R-CNN, as discussed
below.

Traditional NCC Methodology. First, we employ our F-HPB
system to test the performance of the NCC method. Previously,
Ziatdinov et al.17 employed NCC for an accurate analysis of
experimental STM images of molecular self-assemblies. As
shown in Figure 5C, we use a template constructed from an
average of all F-HPB molecules cropped from the STM image

Figure 6.Conditional random field filter. (A) Chirality and position of each molecule predicted by Faster R-CNN. Mmeans predicted molecules. (B)
Chirality and position of each molecule updated by a conditional random field filter generated from domain knowledge. (C, D) Inference results of a
sample low-resolution STM image of HPB system with steps before and after applying the CRF field. (E, F) Zoomed-in views of (C) and (D), which
show the reduction of false positives and false negatives after CRF filter. (G, H) Sample distribution probabilities at different neighboring conditions for
FHPB and HPB systems learned from the images. (I) Comparison of recognition rates and false positive rates before and after applying the CRF field
on the two systems.
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containing 53 molecules to perform normalized cross-
correlation on experimental STM images. The results in Figure
5B show that the recognition rate of the NCCmethod applied to
high-resolution STM images of the F-HPB system is
unsatisfactory. Inference results of the NCC method on high-
resolution and low-resolution STM images are also shown in
Figure 5D,E. While our Faster R-CNN approach achieves a
recognition rate of 100% and 95.1% on high-resolution and low-
resolution STM images, respectively, the NCC method detects
only 72.7% and 49.7% of molecules in these two STM images.
Compared to HPB assembly, the STM image of the F-HPB

system shows a more complex pattern, which results in a greater
difficulty of detection. From the results shown in Figure 5D,E, it
is evident that the traditional machine vision-based molecule
detection method is prone to confuse backgrounds or
interspaces between molecules with a hollow-center shape.
The substantial disadvantage of traditional approaches lies in the
fact that different algorithms and model parameters are required
for different molecular patterns to achieve the desired
performance, and a long trial-and-error process is required to
decide viable algorithms and parameters.18 Therefore, the
introduction of R-CNN significantly improves the detection rate
of molecules with a complex pattern.
Mask R-CNN Methodology. Compared with Faster R-CNN,

Mask R-CNN30 extends Faster R-CNN by adding a parallel
branch for predicting an object mask. The object mask indicates
the pixels of objects in the bounding box. It is also reported that
Mask R-CNN has improved detection pooling.22 However,
results shown in Figure 5A suggest that Faster R-CNN achieved
better performance in this experiment with a higher recognition
rate. While the Faster R-CNN model is dedicated to predicting
the position and chirality of eachmolecule, Mask R-CNNmodel
yields additional information about molecular masks, which is
not useful for molecular pattern recognition and leads to more
computational burdens. More details about Mask R-CNN can
be found in Figure S9.
Domain Knowledge Incorporation and Generality

Test. The domain knowledge of molecular assemblies could
also be incorporated into molecule detection and classification.
As molecular assemblies would usually adopt one or a few
specific patterns, the abnormal predictions from the Faster R-
CNN model, which disobey and break the pattern, could be re-
evaluated by an additional conditional random field (CRF) filter
based on the domain knowledge. While the Faster R-CNN
model can already achieve exceptionally high performance on
STM images of various conditions as shown in previous
experiments, the domain knowledge incorporated in the CRF
filter could complement the pure machine learning model and
further enhance the overall model performance. The filter would
be especially effective on “nonideal” STM images with defects,
where the Faster R-CNN could not yield a 100% recognition
rate. “Nonideal” STM images are defined as STM images with
imperfection features (e.g., artifacts arising from imaging
instability or STM images containing the step edges or grain
boundaries). In this study, the capability of the CRF filter will be
evaluated on a set of defected STM images, as shown in Figure 6.
Figure 6A,B shows the mechanism of the CRF filter. The filter

receives the predictions from the Faster R-CNN model and
generates a set of distribution probabilities for each molecule to
be a certain chirality when its neighbors are observed to be in a
certain condition. This step allows the CRF filter to learn the
regional molecular patterns within the image. The CRF will be
subsequently used to identify the less confident (i.e., both the

classification categories are smaller than 0.7) predictions given
by the Faster R-CNNmodel and to correct them based on their
neighboring molecules to match the molecular patterns shown
on the image. Figure 6C,D provides the inference results of a
low-resolution STM image of the HPB system with steps before
and after applying the CRF field. Figure 6E,F provides zoomed-
in views, which show the reduction of false positives and false
negatives after CRF filter.
In addition to the single case shown in Figure 6, many other

nonideal STM images as well as STM images of a completely
different molecular self-assembly were tested and shown in
Supplementary Note S10 and Note S11 respectively. The good
performances for both the nonideal scenarios and the
completely different molecular system have proved further the
generality of our framework. Moreover, the average recognition
rates and false positive rates before and after applying the CRF
filter on the two systems in this study are provided in Figure 6I,
which shows an increase in recognition rates and a significant
decrease in false positive rates after applying the CRF filter on
defected images. This indicates the effectiveness of this
additional domain knowledge incorporated module. More
details about the CRF filter can be found in the Experimental
Section.

■ DISCUSSION
In summary, we have developed a one-image−one-system deep
learning framework, which encompasses a uniquely designed
data selection method, effective data augmentation techniques,
and a Faster R-CNN detection model for semiautomated
molecule detection and chirality identification of densely packed
molecular self-assemblies in STM experiments. Our deep
learning framework enables an efficient and well-trained
automated analytic tool with a recognition rate of over 90%
using a single STM image. Due to the high performance,
robustness, and low-data requirement, our framework serves as a
general automation solution for the detection and classification
of complex SPM patterns. Our current framework can
potentially remarkably accelerate the routine tasks of SPM
researchers and the database development at the same time. It is
expected to accelerate advanced materials discovery, involving
supramolecular assemblies, for a wide range of applications such
as photovoltaics, photocatalysts, organic semiconductors, drug
delivery, cell culture, and molecular tuning.5

While our framework realizes fast deployment of an
automation solution to any molecular system with limited
experimental data supply, there is still a need to train separate
models for different tasks and molecular systems. A general
model that could be applied to different tasks and molecular
systems for SPM imaging would be possible if a huge amount of
versatile training data are provided. Such general models are
usually available in other fields of deep learning where abundant
training data can be collected, such as GPT-3 in natural language
processing.31 This amount of data could be possible from SPM
image simulation methods17,32−34 or automated SPM imaging
tools.11,35,36 In fact, simulated STM images were recently used
for the training of the CNN.33,34 Nevertheless, STM contrast
depends on multiple variables, including tip−sample distance,
orbital texture of the tip-apex, bias voltage, etc. Frequently, these
variables cannot be correctly captured by STM simulations,
leading to attenuated agreement between simulated and real
STM images. In addition, the automation SPM imaging tool is
still in the early stage, which can only work for a specific
system.11 Though a large amount of SPM images as a training set
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for a general model are currently not feasible, we foresee this
kind of general-purpose SPM intelligent model will be a
meaningful future direction, and a general model will be
developed when versatile data set is available.

■ EXPERIMENTAL SECTION
Faster R-CNN. Faster R-CNN is presented by a combination of two

neural networks, named regional proposal network26 (RPN) and fast
region-based convolutional neural networks (Fast R-CNN). A general
block chat diagram of this key model is illustrated in Figure 2, consisting
of (i) fast region-based convolutional neural networks network
(FPN)23 backbone (i.e., feature extraction stage), (ii) RPN (i.e.,
molecule detection stage), and (iii) region of interest (RoI) module
(i.e., molecule classification stage). In the following section, we provide
a detailed explanation of each element of the Faster R-CNN
architecture.
FPN extracts feature maps of the different scales from input SPM

images and, hence, enables Faster R-CNN to detect molecules of
various sizes, revealed by SPM images with different resolutions. As
highlighted in blue in Figure 2, FPN includes five convolutional blocks
connected in series built with a total of 50 convolutional and ReLu
layers (ResNet-5037). The detailed architecture is provided in
Supplementary Note S7.
For a common three-channel SPM image of [3, H, W], three

channels are used to store color information (red, green, and blue);H is
the height of the image, andW is the width of the image. After the SPM
image is processed, five 256-channel feature maps at five different scales
can be extracted from different layers of FPN. 256 channels are used to
store extensive abstract information on the input SPM image that is
further used for molecular recognition. Different scales are designed to
detect molecules of various sizes, which is explained in depth in the RoI
section below. Feature map level is a number ranging from 1 to 5,
determined by the layer location where a map feature is extracted. As
the level of feature maps increases, the scale and resolution of feature
maps decrease as shown in Figure 2, blue part. In the meantime, the
spatial coverage and abstract information on feature maps gradually
increase. Small objects like molecules are usually detected in low-level
feature maps, which mainly contain high-resolution information
essential for detection and location. The top-down structure of FPN
allows high-level featuremaps, which includemore abstract information
essential for classification, to be incorporated into low-level feature
maps.23

RPN generates regional proposals, or bounding boxes, on the
extracted feature maps and gives a score for each bounding box to
contain objects of interest. For each input image, massive square
anchors of five various sizes centered by each pixel of feature maps are
first generated, as shown in Figure 2. It aims to ensure that all objects
present in the feature maps are fully or partially covered by one or
multiple anchors. The shape and sizes of anchors are deliberately
customized for our small square-shaped molecules. After a two-stage
fine-tuning and filtering in RPN and RoI (introduced later), anchors are
outputted as bounding boxes, which can accurately predict the position
of molecules on the input SPM images. A visualization of anchor
processing schematics in this section and subsequent RoI section is
shown in Figure 2. After the generation of a large number of possible
anchors, a CNN based anchor proposal network is used. This network
will output two kinds of information: the first one is the score of the
proposed anchors, and the second is the tuning parameters for adjusting
the proposed anchors. The higher the score, there is a higher possibility
for the anchor to contain objects (i.e., molecules). Afterward, bad
quality anchors (i.e., low score, out of the region, etc.) are removed.
Besides, duplicate anchors are also removed by the nonmaximum
suppression (NMS) method which is introduced later. The proposal
information is combined with raw feature information from FPN and
passed into the RoI module.
The RoI module will first convert the combined information from

RPN and FPN into fixed-size vectors. The fixed-size characteristic
allows proposals of different sizes to be classified by the same fully
connected (FC) layers. The feature maps of the fixed shape are

flattened and then processed by FC layers similar to a typical CNN.38

The FC layers would output two matrixes: (i) a three-channel matrix
containing the scores for the proposals to be each of the three classes
(left-handed molecule (L-chiral), right-handed molecule (R-chiral), or
a background); (ii) a four-channel matrix containing four final
bounding box fine-tuning parameters. The probability distribution for
a detected molecule to be a certain chirality (L- or R-chirality) is
obtained from the scores by using the SoftMax function.

The hyperparameters used in this study were deliberately chosen for
SPM image and small objects detection. However, we noticed that the
instancing results might not be sensitive to hyperparameters since the
complexity of molecular chirality classification is intrinsically low as
suggested by t-SNE results. This developed method shows great
improvements with higher performance, better accuracy, lower
computational cost, and faster detection speed compared to traditional
approaches.

NMS. It works as the anchor with the highest score is retained when
multiple anchors have a large intersection over union (IoU). The above
circumstance indicates those anchors probably cover the same
molecule. RPN then outputs the remaining anchors with high scores
as proposals. Each proposal is a bounding box obtained by preliminarily
fine-tuning an anchor which likely contains a molecule. However, most
anchors would be discarded as duplicates or backgrounds at this stage.
More details about NMS operation can be found in Supplementary
Note S8.

Transfer Learning and Training.Due to the data limitation in our
study, we employed the transfer learning strategy that was widely used
when using faster-RCNN. The transfer learning method to accelerate
convergence was adapted by starting from a ResNet-50-FPN model23

pretrained on COCO train2017 data set39 comprising images of daily
life objects. This approach can be used since the bottom of the
backbone network FPN would be similar regardless of the detection
targets of Faster R-CNN.40 During the training process, the weights of
model parameters from convolutional and fully connected layers are
adjusted by the backpropagation and gradient descent method to
minimize a loss function. The loss functionmainly includes two types of
components which are SoftMax cross-entropy classification loss
between the actual chirality of molecules and model predictions and
L1 bounding box regression loss between the actual positions, sizes of
molecules, and model predictions. The detailed mathematical
expression is provided in Supplementary Note S9.

t-SNE. t-SNE is an unsupervised machine learning algorithm often
used for clustering and visualization of high-dimensional data. The
algorithm starts by calculating the conditional probability of similarity
between high-dimensional data points and also between their low-
dimensional counterparts by the Euclidean distances of data points. It
then attempts to minimize a cost function, which is defined as a single
Kullback−Leibler divergence between joint probability distributions in
the high-dimensional space and the low-dimensional space, by using a
Student’s t-distribution with a single degree of freedom to compute the
similarity between two points in the low-dimensional space. Kullback−
Leibler divergence measures the distance between two random
distributions. When two random distributions are the same, their
Kullback−Leibler divergence is equal to zero. When the difference
between two random distributions increases, their Kullback−Leibler
divergence also increases.41

CRF Filter. Conditional random field filter is a statistical modeling
method that is used to classify a sample (a molecule in this study) based
on its neighboring samples. The filter will first identify the
intermolecular distance of the assembly and the neighbors of each
molecule from the predictions of the Faster R-CNN. The molecular
patterns on the STM image can be automatically learned by the CRF
filter by generating a set of probability distributions. These probability
distributions record the probability for a molecule to be R or L chirality
at different neighboring conditions. On the basis of both the Faster R-
CNN predictions and the probability distributions, the CRF filter can
then re-evaluate all less confident predictions by the following eq 1:

P
Z

P P(R)
1

(R) (R N )i0 CRF= |
(1)
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where P0(R) is the prior probability for a molecule to be R chirality
predicted by Faster R-CNN, PCRF(R|Ni) is the probability for the
molecule to be R chirality given its neighboring condition Ni, Z is a
normalizing constant, and P(R) is the posterior probability for the
molecule to be R chirality. The chirality of each molecule will be
predicted based on the posterior probability in the final inference
results. The source code can be found in the Zenodo database.
STM Measurements and Fabrication of Molecular Self-

Assemblies. The synthetic procedures of the HPB and F-HPB
compounds have been reported in previous studies.42,43 A Knudsen cell
was used to deposit the HPB and F-HPB precursor molecules (at 160
and 180 °C, respectively) onto a Ag(111) surface held at room
temperature. The STM experiments were performed in ultrahigh
vacuum conditions (base pressure of >5 × 10−11 mbar) at 4.4 K using a
commercial Omicron low temperature STM system.
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